Spatial Learning for Robot Locialization
نویسندگان
چکیده
Although evolutionary algorithms have been employed to automatically synthesize control and behavior programs for robots and even design the physical structures of the robots, it is impossible for evolution to anticipate the detailed structure of speci c environments that the robot might have to deal with. Robots must thus possess mechanisms to learn and adapt to the environments they encounter. One such mechanism that is of importance to mobile robots is that of spatial learning, i.e., the ability to learn the spatial locations of objects and places in the environment, which would allow them to successfully explore and navigate in a-priori unknown environments. This paper proposes a computational model for the acquisition and use of spatial information that is inspired by the role of the hippocampal formation in animal spatial learning and navigation.
منابع مشابه
Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملModeling and Wrench Feasible Workspace Analysis of a Cable Suspended Robot for Heavy Loads Handling
Modeling and Wrench feasible workspace analysis of a spatial cable suspended robots is presented. A six-cable spatial cable robot is used the same as Stewart robots. Due to slow motion of the robot we suppose the motion as pseudostatic and kinetostatic modeling is performed. Various workspaces are defined and the results of simulation are presented on the basis of various workspaces and app...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملبهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین
In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014